Seminar Topics: Information Extraction

Matthias Huck, Alexander Fraser

LMU Munich

25 October 2017

Joint Named Entity Recognition and Disambiguation

Overview:

- NER: detecting text spans of entity mentions and tagging them with coarse-grained types.
- NED: mapping mentions to entities in a knowledge base (KB).
- Can both be done jointly rather than in two separate stages?

Paper:

 J-NERD: Joint Named Entity Recognition and Disambiguation with Rich Linguistic Features.
 Dat Ba Nguyen, Martin Theobald, Gerhard Weikum. TACL 2016.

https://transacl.org/ojs/index.php/tacl/article/view/698

Recommended prior knowledge:

Some basic understanding of CRFs.

Named Entity Recognition with Neural Networks

Overview:

- What would a state-of-the-art neural model for NER look like?
- Using a hybrid LSTM-CNN architecture.
- With word- and character-level features.
- · And employing publicly available word embeddings.

Paper:

 Named Entity Recognition with Bidirectional LSTM-CNNs. Jason P.C. Chiu, Eric Nichols. TACL 2016.

https://transacl.org/ojs/index.php/tacl/article/view/792

Recommended prior knowledge:

Some basic understanding of RNNs & word embeddings.

Relation Classification with Neural Networks

Overview:

- Relation classification: identifying the semantic relation between two entities in text.
- What would a state-of-the-art neural model for relation classification look like?

Paper:

 Relation Classification via Multi-Level Attention CNNs. Linlin Wang, Zhu Cao, Gerard de Melo, Zhiyuan Liu. ACL 2016.

http://www.aclweb.org/anthology/P/P16/P16-1123.pdf

Recommended prior knowledge:

- Some basic understanding of CNNs.
- Attention mechanism as in sequence-to-sequence learning.

Relation Extraction via Reading Comprehension

Overview:

- Relation extraction systems can be used to populate knowledge bases with facts from an unstructured text corpus.
- Challenging when the types of facts (relations) are not predefined.
- How can we generalize to unseen relations? (Zero-shot learning problem.)
- Can relation extraction be reduced to reading comprehension?

Paper:

Zero-Shot Relation Extraction via Reading Comprehension.
 Omer Levy, Minjoon Seo, Eunsol Choi, Luke Zettlemoyer.
 CoNLL 2017.

http://www.aclweb.org/anthology/K/K17/K17-1034.pdf

(ADVANCED TOPIC.)

Open-Domain Question Answering

Overview:

- The answer to any factoid question is a text span in Wikipedia.
- Document retrieval: finding the relevant articles.
- · Machine comprehension: identifying the answer spans.
- Machine reading at scale:
 How to build a modern large-scale QA system?

Paper:

Reading Wikipedia to Answer Open-Domain Questions.
 Danqi Chen, Adam Fisch, Jason Weston, Antoine Bordes.
 ACL 2017.

http://www.aclweb.org/anthology/P/P17/P17-1171.pdf

Dialogue Agents for Information Access

Overview:

 How to build a modern dialogue agent which helps users search knowledge bases without composing complicated queries?

Paper:

 Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal Ahmed, Li Deng.

ACL 2017.

http://www.aclweb.org/anthology/P/P17/P17-1045.pdf

(ADVANCED++ TOPIC.) Recommended prior knowledge:

- Calculus and probability theory.
- RNNs.
- · Reinforcement learning.

Extracting Structured Information from Conversations

Overview:

- Given a dialogue between a customer and a waiter in a restaurant, how could a computer understand the order?
- Sequence-to-sequence learning task: "translating" from the natural language conversation to a structured data record.

Paper:

 May I take your order? A Neural Model for Extracting Structured Information from Conversations.

Baolin Peng, Michael Seltzer, Y.C. Ju, Geoffrey Zweig, Kam-Fai Wong.

EACL 2017.

http://www.aclweb.org/anthology/E/E17/E17-1043.pdf

Recommended prior knowledge:

Sequence-to-sequence learning (encoder-decoder approach).

Automatic Biomedical Knowledge Extraction

Overview:

- How to automatically discover important facts by mining biomedical literature?
- Named entity extraction, relation extraction, and ranking of extracted insights in the biomedical domain.

Paper:

 An Insight Extraction System on BioMedical Literature with Deep Neural Networks.

Hua He, Kris Ganjam, Navendu Jain, Jessica Lundin, Ryen White, Jimmy Lin.

EMNLP 2017.

http://www.aclweb.org/anthology/D/D17/D17-1284.pdf

Credibility Prediction of User Statements

Overview:

- Discussions in online communities are often plagued by inaccuracies and misinformation.
- Can the credibility of drug side-effect statements in health communities be assessed automatically?

Paper:

 People on Drugs: Credibility of User Statements in Health Communities.

Subhabrata Mukherjee, Gerhard Weikum, Cristian Danescu-Niculescu-Mizil.

KDD 2014.

https://dl.acm.org/citation.cfm?id=2623714

Event Detection in Social Media

Overview:

- Information on many real-world events appears in social media before any traditional news agencies report.
- Can disruptive events be automatically detected in the streamed social media data?

Paper:

 Can We Predict a Riot? Disruptive Event Detection Using Twitter.

Nasser Alsaedi, Pete Burnap, Omer Rana. ACM Transactions on Internet Technology 2017. https://dl.acm.org/citation.cfm?id=2996183

A Web-scale Probabilistic Knowledge Base

Overview:

- Exploring automatic methods for constructing knowledge bases.
- How to extract facts from the Web and combine them with existing prior knowledge?
- Google's Knowledge Vault: about 38 times bigger than other automatically constructed KBs (in 2014).

Paper:

 Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion.

Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, Wei Zhang.

KDD 2014.

https://dl.acm.org/citation.cfm?id=2623623

Hint: Paywalled Literature

Access to publications behind a paywall can often be provided via the university library.

Try "E-Medien-Login", using your LMU user ID: http://www.ub.uni-muenchen.de/ausleihe-online/digitaler-zugriff/e-medien-login/index.html

Alternatively, search the web for preprint versions.

Questions?

Thank you for your attention

Matthias Huck

mhuck@cis.lmu.de